ریاضیات یا انگارش[۱] را بیشتر دانش بررسی کمیتها و ساختارها و فضا و دگرگونی (تغییر) تعریف میکنند. دیدگاه دیگری ریاضی را دانشی میداند که در آن با استدلال منطقی از اصول و تعریفها به نتایج دقیق و جدیدی میرسیم (دیدگاههای دیگری نیز در فلسفه ریاضیات بیان شدهاست).
ریاضیات خود یکی از علوم طبیعی بهشمار نمیرود، ولی ساختارهای ویژهای که ریاضیدانان میپژوهند بیشتر از دانشهای طبیعی به ویژه فیزیک سرچشمه میگیرند و در فضایی جدا از طبیعت و محض گونه گسترش پیدا میکند به طوری که علوم طبیعی برای حل مسائل خود به ریاضی باز میگردند تا جوابشان را با آن مقایسه و بررسی کنند.
علوم طبیعی، مهندسی، اقتصاد و پزشکی بسیار به ریاضیات تکیه دارد ولی گاه ریاضیدانان به دلایل صرفاً ریاضی (و نه کاربردی) به تعریف و بررسی برخی ساختارها میپردازند.
مجموعه، رابطه، تابع، عمل، گروه، میدان، عدد، اعداد طبیعی، اعداد حسابی، اعداد صحیح، اعداد اول، اعداد مرکب، اعداد گویا، اعداد گنگ، اعداد حقیقی، اعداد مختلط، اعداد جبری، عدد پی، عدد ای، چهارگانها، هشتگانها، شانزدهگانها، اعداد پی-ادیک، اعداد فوق پیچیده (Hypercomplex numbers)،اعداد فوق حقیقی (Hyperreal number)،اعداد فراواقعی (Surreal numbers)، بینهایت، اعداد ترتیبی، اعداد اصلی، ثابتهای ریاضی، پایه
جبر مجرد، نظریه اعداد، هندسه جبری، نظریه گروهها، مونوئیدها، آنالیز ریاضی، آنالیز تابعی، توپولوژی، جبر خطی، نظریه گراف، جبر عمومی، نظریه مدولها، نظریه ترتیب، نظریه مزور
توپولوژی، هندسه، مثلثات، هندسه جبری، هندسه دیفرانسیل، توپولوژی دیفرانسیل، توپولوژی جبری، جبر خطی، هندسه برخالها، متری
حساب، حسابان، حساب برداری، آنالیز ریاضی، معادلات دیفرانسیل، سیستمهای دینامیکی، نظریه آشوب، فهرست تابعها
فلسفه ریاضیات، شهودگرایی، ساختگرائی، مبانی ریاضیات، نظریه مجموعهها، منطق نمادی، نظریه مدل، نظریه رستهها، منطق ریاضی، ریاضیات معکوس، جدول نمادهای ریاضی
[1,2,3][1,3,2] [2,1,3][2,3,1] [3,1,2][3,2,1] | ![]() | ![]() | ![]() | ![]() |
ترکیبیات | نظریه شهودی مجموعهها | نظریه رایانش | رمزنگاری | نظریه گراف |
ترکیبیات، نظریه شهودی مجموعهها، نظریه رایانش، رمزنگاری، نظریه گراف
فیزیک ریاضی، مکانیک، مکانیک سیالات، آنالیز عددی، بهینهسازی، احتمالات، آمار، اقتصاد ریاضی، ریاضیات مالی، نظریه بازیها، ریاضیات زیستی، رمزنگاری، نظریه اطلاعات
برتراند راسل زمانیکه درباره روش بُنداشتی (اصل موضوعی) سخن میگفت که در آن برخی ویژگیهای یک ساختار (که چیزی از آن نمیدانیم) فرض میشود و پیامدهای این فرض از راه منطق نتیجهگیری میشود گفت:
« | ریاضیات را میتوان رشتهای تعریف کرد که در آن نه معلوم است از چه سخن میگوییم و نه میدانیم آنچهکه میگوییم صحت دارد. | » |
« | ما در ریاضیات مطالب را نمیفهمیم، بلکه تنها به آنها عادت میکنیم. | » |