هر دری سخن

مطلب. دانلود(فیلم.موزیک......).عکس....

هر دری سخن

مطلب. دانلود(فیلم.موزیک......).عکس....

ریاضیات

ریاضیات یا انگارش[۱] را بیش‌تر دانش بررسی کمیت‌ها و ساختار‌ها و فضا و دگرگونی (تغییر) تعریف می‌کنند. دیدگاه دیگری ریاضی را دانشی می‌داند که در آن با استدلال منطقی از اصول و تعریف‌ها به نتایج دقیق و جدیدی می‌رسیم (دیدگاه‌های دیگری نیز در فلسفه ریاضیات بیان شده‌است).

ریاضیات خود یکی از علوم طبیعی به‌شمار نمی‌رود، ولی ساختارهای ویژه‌ای که ریاضیدانان می‌پژوهند بیشتر از دانشهای طبیعی به ویژه فیزیک سرچشمه می‌گیرند و در فضایی جدا از طبیعت و محض گونه گسترش پیدا می‌کند به طوری که علوم طبیعی برای حل مسائل خود به ریاضی باز می‌گردند تا جوابشان را با آن مقایسه و بررسی کنند.

علوم طبیعی، مهندسی، اقتصاد و پزشکی بسیار به ریاضیات تکیه دارد ولی گاه ریاضیدانان به دلایل صرفاً ریاضی (و نه کاربردی) به تعریف و بررسی برخی ساختارها می‌پردازند.

[ویرایش] موضوع‌های اصلی ریاضیات

فهرستی الفبائی از عنوان‌های ریاضی موجود است. در زیر بعضی از اصلی‌ترین شاخه‌ها و موضوعات ریاضی به صورت دسته‌بندی شده ارائه شده است:

[ویرایش] کمیت

مجموعه، رابطه، تابع، عمل، گروه، میدان، عدد، اعداد طبیعی، اعداد حسابی، اعداد صحیح، اعداد اول، اعداد مرکب، اعداد گویا، اعداد گنگ، اعداد حقیقی، اعداد مختلط، اعداد جبری، عدد پی، عدد ای، چهارگان‌ها، هشت‌گان‌ها، شانزده‌گان‌ها، اعداد پی-ادیک، اعداد فوق پیچیده (Hypercomplex numbers)،اعداد فوق حقیقی (Hyperreal number)،اعداد فراواقعی (Surreal numbers)، بینهایت، اعداد ترتیبی، اعداد اصلی، ثابت‌های ریاضی، پایه

[ویرایش] ساختار

Elliptic curve simple.pngGroup diagram d6.svg
جبر مجردنظریه اعدادنظریه گروه‌ها
Torus.jpgMorphismComposition-01.pngLattice of the divisibility of 60.svg
توپولوژینظریه مدول‌هانظریه ترتیب

جبر مجرد، نظریه اعداد، هندسه جبری، نظریه گروه‌ها، مونوئیدها، آنالیز ریاضی، آنالیز تابعی، توپولوژی، جبر خطی، نظریه گراف، جبر عمومی، نظریه مدول‌ها، نظریه ترتیب، نظریه مزور

[ویرایش] فضا

Torus.jpgPythagorean.svgTaylorsine.svgOsculating circle.svgKoch curve.svg
توپولوژیهندسهمثلثاتهندسه دیفرانسیلهندسه برخال‌ها

توپولوژی، هندسه، مثلثات، هندسه جبری، هندسه دیفرانسیل، توپولوژی دیفرانسیل، توپولوژی جبری، جبر خطی، هندسه برخال‌ها، متری

[ویرایش] تغییر

36 \div 9 = 4Integral as region under curve.pngVectorfield jaredwf.png\int 1_S\,d\mu=\mu(S)
حسابحسابانحساب برداریآنالیز ریاضی
\frac{d^2}{dx^2} y = \frac{d}{dx} y + cLimitcycle.jpgLorenzAttractor.png
معادلات دیفرانسیلسیستم‌های دینامیکینظریه آشوب

حساب، حسابان، حساب برداری، آنالیز ریاضی، معادلات دیفرانسیل، سیستم‌های دینامیکی، نظریه آشوب، فهرست تابع‌ها

[ویرایش] پایه‌ها و روش‌های ریاضیات

فلسفه ریاضیات، شهودگرایی، ساخت‌گرائی، مبانی ریاضیات، نظریه مجموعه‌ها، منطق نمادی، نظریه مدل، نظریه رسته‌ها، منطق ریاضی، ریاضیات معکوس، جدول نمادهای ریاضی

[ویرایش] ریاضیات گسسته

[1,2,3][1,3,2]
[2,1,3][2,3,1]
[3,1,2][3,2,1]
Venn A intersect B.svgDFAexample.svgCaesar3.svg6n-graf.png
ترکیبیاتنظریه شهودی مجموعه‌هانظریه رایانشرمزنگارینظریه گراف

ترکیبیات، نظریه شهودی مجموعه‌ها، نظریه رایانش، رمزنگاری، نظریه گراف

[ویرایش] ریاضیات کاربردی

فیزیک ریاضی، مکانیک، مکانیک سیالات، آنالیز عددی، بهینه‌سازی، احتمالات، آمار، اقتصاد ریاضی، ریاضیات مالی، نظریه بازی‌ها، ریاضیات زیستی، رمزنگاری، نظریه اطلاعات


[ویرایش] گفتاورد (نقل قول)

برتراند راسل زمانیکه درباره روش بُنداشتی (اصل موضوعی) سخن می‌گفت که در آن برخی ویژگی‌های یک ساختار (که چیزی از آن نمی‌دانیم) فرض می‌شود و پیامدهای این فرض از راه منطق نتیجه‌گیری می‌شود گفت:

«ریاضیات را می‌توان رشته‌ای تعریف کرد که در آن نه معلوم است از چه سخن می‌گوییم و نه می‌دانیم آنچه‌که می‌گوییم صحت دارد. »

برتراند راسل

«ما در ریاضیات مطالب را نمی‌فهمیم، بلکه تنها به آنها عادت می‌کنیم. »

جان فون نویمن


نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد